Improved Durability and Cost-effective Components for New Generation Solid Polymer Electrolyte Direct Methanol Fuel Cells

Project Information
Framework Programme: 
Call for proposals: 
Application area: 
Early markets
DURAMET - Methanol fuel cells

Key Objectives of the project

Direct Methanol Fuel Cells  (DMFCs) working at low and intermediate temperatures (up to 130-150 °C) and employing solid protonic electrolytes have been postulated as suitable systems for power generation in the field of portable power sources, remote and micro-distributed energy generation as well as for auxiliary power units (APU) in stationary and mobile applications. DMFCs utilize liquid fuel to deliver continuous power and they have low fuel storage and handling constraints than hydrogen fuelled fuel cells. The main objective of the DURAMET project is to develop cost-effective components for direct methanol fuel cells (DMFCs) with enhanced activity and stability in order to reduce stack costs and improve performance and durability. The project concerns with the development of DMFC components for application in auxiliary power units (APU) as well as for portable systems.

Challenges/issues addressed

In order to be competitive within the portable and distributed energy markets, the DMFCs must be reasonably cheap, they should be characterised by high durability and capable of delivering high power densities. At present, there are some challenging problems to the development of such systems. These mainly consist of developing:

i) anode electro-catalysts which can effectively enhance the electrode-kinetics of methanol oxidation

ii) electrolyte membranes which have high ionic conductivity and low-methanol/Ru cross-over and

iii) methanol-tolerant cathode electrocatalysts with high activity for oxygen reduction.

Furthermore, all aspects related to fuel cell stack development are of particular relevance, in particular, materials and design of cell housing, bipolar plates, gaskets and stack auxiliaries. All these materials contribute to the final characteristics of practical devices determining their performance, efficiency and cost.

Before these technologies can reach a full scale production, specific problems have to be solved especially the high cost and the short term stability.

Technical approach/objectives

The activities of this project will be focused on new cost-effective membranes with better resistance than Nafion to methanol cross-over as well as to the drag of Ru ions. Improved durability electro-catalysts will be developed with the aim to reduce costs, degradation and noble metals content. To validate the new membranes and electro-catalysts materials, specific development of membrane-electrode assembly will be carried out with tailored hydrophobic-hydrophilic electrode characteristics. The new developed components will be thus validated in short stacks to assess their performance and durability under practical operation. Specific attention will be devoted to the exploitation, dissemination and the training of young researchers.

Expected socio and economic impact

The market segments for DMFCs concern with portable generators, UPS and back-up power systems and portable micro-fuel cells for specialist products. They are considered to be financially attractive for an emerging Fuel Cells European industry in the short term while being technically representative of power ranges and application requirements for which fuel cells can be used in other early-market applications. Direct methanol fuel cells are indeed particularly suited for auxiliary-power-units (APU) applications. Cars and other vehicles, from trucks to airplanes, have power requirements beyond those for propulsion. Auxiliary-power requirements are likely to grow significantly as developers incorporate additional electronics into vehicles. The power range of some hundreds Watts is suitable for devices such as weather stations, medical devices, signal units, APU's, gas sensors and security cameras. DMFCs will care for much longer power autonomy and will make possible to expand the use of different devices even in remote areas. Not only do they provide the potential to reduce pollution, energy use, and greenhouse gases, but they also provide the potential to reduce costs and to increase comfort since vibration and noise are reduced in several applications. 

Achievements/Results to date

In the first two months, the activity was focused on the Internal work space (deliverable already achieved), web site construction, specifications and protocols, dissemination protocol and base components development such as electro-catalysts, novel membranes was initiated. Selection of MEAs assembling procedures as well as individuation of the cell and stack test fixtures was another important activity carried out in the first months of the project.

Project details
Project reference: 
SP1-JTI-FCH.2010.4.4: Components with advanced durability for Direct Methanol Fuel Cells
Project type: 
Research and technological development
Contract type: 
Collaborative Project
Start date: 
Thursday, December 1, 2011
End date: 
Sunday, November 30, 2014
36 months
Project cost: 
€ 2,956,874
Project funding: 
€ 1,496,617

CNR-ITAE, Istituto di Tecnologie Avanzate per l'Energia Nicola Giordano

Dr. Antonino Salvatore Arico'
Contact email: 
Other participating organisations: 
Centre National de la Recherche Scientifique – CNRS France
FUMA-TECH Gesellschaft fuer Funktionnelle Membranen und Anlagentechnologie MBH FUMATECH       Germany
Centro Ricerche FIAT SCPA – CRF Italy
Technische Universitaet Muenchen – TUM Germany
IRD Fuel Cells A/S (Industrial Research & Development A/S) – IRD Denmark
Politecnico Di Torino – POLITO Italy
JRC -Joint Research Centre – European Commission - JRC-IE Belgium
Patents and Publications
F. Lufrano , V. Baglio , P. Staiti , V. Antonucci , A.S. Arico', Journal of Power Sources 01/12/2013, 519-534, "Performance analysis of polymer electrolyte membranes for direct methanol fuel cells"
Antonino S. Aricò , Alessandro Stassi , Claudia D'Urso , David Sebastian , Vincenzo Baglio, Chemistry - A European Journal 18/08/2014, 10679-10684, "Synthesis of Pd"
Luigi Osmieri, Alessandro H.A. Monteverde Videla, Stefania Specchia, Journal of Power Sources 15/03/2015, 296-307, "Activity of Co?N multi walled carbon nanotubes electrocatalysts for oxygen reduction reaction in acid conditions"
J. Zeng , C. Francia , C. Gerbaldi , V. Baglio , S. Specchia , A.S. Arico , P. Spinelli, Electrochimica Acta 01/04/2013, 80-91, "Hybrid ordered mesoporous carbons doped with tungsten trioxide as supports for Pt electrocatalysts for methanol oxidation reaction"
R. Carrera-Cerritos , V. Baglio , A.S. Aricò , J. Ledesma-Garcia , M.F. Sgroi , D. Pullini , A.J. Pruna , D.B. Mataix , R. Fuentes-Ramirez , L.G. Arr, Applied Catalysis B: Environmental 01/01/2014, 554-560, "Improved Pd electro-catalysis for oxygen reduction reaction in direct methanol fuel cell by reduced graphene oxide"
V. Baglio, D. Sebastián, C. D’Urso, A. Stassi, R.S. Amin, K.M. El-Khatib, A.S. Aricò, Electrochimica Acta 10/05/2014, 304–310, "Composite anode electrode based on iridium oxide promoter for direct methanol fuel cells"
V. Baglio, R. S. Amin, K. M. El-Khatib, S. Siracusano, C. D'Urso and A. S. Aricò, Physical Chemistry Chemical Physics 30/01/2014, 10414-10418, "IrO2 as a promoter of Pt–Ru for methanol electro-oxidation"
V. Baglio , C. D'Urso , D. Sebastián , A. Stassi , A.S. Aricò, International Journal of Hydrogen Energy 01/03/2014, 5399-5405, "PtCo catalyst with modulated surface characteristics for the cathode of direct methanol fuel cells"
R.S. Amin , K.M. El-Khatib , S. Siracusano , V. Baglio , A. Stassi , A.S. Arico, International Journal of Hydrogen Energy 01/06/2014, 9782-9790, "Metal oxide promoters for methanol electro-oxidation"
F. Capitanio , S. Siracusano , A. Stassi , V. Baglio , A.S. Aricò , A.C. Tavares, International Journal of Hydrogen Energy 01/05/2014, 8026-8033, "AC impedance spectroscopy investigation of carbon supported Pt3Co and Pt cathode catalysts in direct methanol fuel cell"
S. Siracusano , A. Stassi , E. Modica , V. Baglio , A.S. Aricò, International Journal of Hydrogen Energy 01/08/2013, 11600-11608, "Preparation and characterisation of Ti oxide based catalyst supports for low temperature fuel cells"
V. Baglio, S. C. Zignani, S. Siracusano, A. Stassi, C. D’Urso, A. S. Aricò, Electrocatalysis 29/05/2013, 235-240, "Composite Anode Electrocatalyst for Direct Methanol Fuel Cells"
David Sebastián, Vincenzo Baglio, Shuhui Sun, Ana C. Tavares, Antonino S. Aricò, Chinese Journal of Catalysis 15/03/2015, 0-0, "Facile synthesis of Zr- and Ta-based catalysts for the oxygen reduction reaction"
David Sebastián, Vincenzo Baglio, Shuhui Sun, Ana C. Tavares, Antonino S. Aricò, ChemCatChem 15/04/2015, 0-0, "Graphene-supported substoichiometric sodium tantalate as methanol tolerant non-noble metal catalyst for the electro-reduction of oxygen"